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Abstract: - This paper is devoted to the construction and investigation of a hierarchy of two-dimensional
models for thermoelastic piezoelectric plate with variable thickness, which may vanish on a part of the lateral
boundary. The hierarchical two-dimensional models are constructed for plate consisting of inhomogeneous
anisotropic thermoelastic piezoelectric material with regard to magnetic field, when density of surface force,
and normal components of electric displacement, magnetic induction and heat flux vectors are given along the
upper and the lower face surfaces of the plate. The boundary value problems corresponding to the constructed
static two-dimensional models are investigated in suitable weighted Sobolev spaces. The relationship between
the constructed two-dimensional models and the original three-dimensional one is investigated, and the
convergence of the sequence of vector-functions of three variables restored from the solutions of the
constructed two-dimensional problems to the solution of the original three-dimensional boundary value
problem is proved and under additional conditions modeling error estimate is obtained.
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1 Introduction and extension of the dimensional reduction method
Piezoelectric materials are widely used to build en- suggested by I. Vekua in the classical theory of
gineering smart flat panels [1]. Inhomogeneous ma- elasticity for plates with variable thickness [3]. Note
terials, and in particular, functionally graded that this method unlike classical methods of
materials [2] are used to increase the durability and construction of two-dimensional models is not based
efficiency of engineering constructions undergoing on any a-priori assumptions of mechanical or
high mechanical and thermal loads. Therefore, cons- geometrical nature. The classical Kirchoff-Love and
truction and investigation of mathematical models Reissner-Mindlin models can be incorporated into
of inhomogeneous thermoelastic piezoelectric plates the hierarchy obtained by I. Vekua so that the high
and shells has attracted increasing attention in recent order models can be considered as generalizations
years. of the well-known engineering plate models. The

In this paper, thermoelastic piezoelectric plate boundary value problem corresponding to static
with variable thickness, which may vanish on a part two-dimensional model obtained by 1. Vekua for
of the lateral boundary, consisting of inhomogeneo- !lnearly elastic shallow shell [4] was mve_stlgated in
us, in particular, functionally graded, anisotropic in Sobolev spaces [5], and the relationship between
material is considered. It should be pointed out that the two-dimensional ~hierarchical models - const-
two-dimensional models for inhomogeneous anisot- ructed in [3] and the three-dimensional one in static
ropic thermoelastic piezoelectric plates with regard case first was studied in the spaces of classical
to magnetic field have not been constructed and in- regular functions in the paper [6]. Later on, various
vestigated. The two-dimensional models are mainly static and dynamical h!erarchlcal models for plates,
obtained for homogeneous piezoelectric plates. shellg, bar_s and multlgtructures were con_structed

The method of construction of static two- and investigated applying Vekua’s reduction me-
dimensional models for thermoelastic piezoelectric thod and its generalizations (see [7-15] and refe-
plate used in the present paper is a generalization rences given therein).
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In Section 2, by applying variational approach
we investigate in Sobolev spaces boundary value
problem corresponding to the linear static three-
dimensional model of the plate, when on certain
parts of the boundary density of surface force, and
normal components of electric displacement,
magnetic induction and heat flux vectors are given,
and on the remaining parts of the boundary
displacement vector, temperature, electric and
magnetic potentials vanish.

In Section 3, we construct two-dimensional
hierarchical models of plate, when density of
surface force, and normal components of electric
displacement, magnetic induction and heat flux
vectors are given along the upper and the lower face
surfaces of the plate. The subspaces of the space
corresponding to the three-dimensional problem are
constructed, which consist of vector-functions,
whose components are polynomials with respect to
the variable of plate thickness. Note that the
constructed subspaces are weighted Sobolev spaces
of vector-functions defined on two-dimensional
domain, when the thickness of the plate vanishes on
a part of the lateral boundary. By projecting the
three-dimensional problem on the constructed
subspaces hierarchies of static two-dimensional
models of the plate are obtained. The constructed
two-dimensional models are investigated in suitable
spaces, and the existence and uniqueness of the
solution of the corresponding boundary value
problems are proved. The relationship between the
constructed two-dimensional models and the
original one is investigated, and it is proved that the
sequence of vector-functions of three variables
restored from the solutions of the two-dimensional
problems converges in the corresponding function
spaces to the exact solution of the three-dimensional
boundary value problem and under additional
regularity conditions modeling error estimate is
obtained.

2 Three-Dimensional Model
Throughout  this article we denote by

W"2(D)=H"(D) and H'(['), r>1, reR, the
Sobolev spaces of order r based on the spaces
H°(D)=L%(D) and H°(") = L3(I") of square-
integrable functions, respectively, where D < R,
peN, is a bounded domain with Lipschitz

boundary [16] and I'coD isa Lipschitz surface.
We denote by H*(D)=[H*(D)]®, L*(D) =[L*(D)]},
H*(C)=[H*(D)]°, (D) =[L° (D), s=1, seR,
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the corresponding spaces of vector-valued functions.
The trace operators we denote by ftr.:

HY(D) —» H"(I") and tr. : H'(D) — H'*().

Let us consider a thermoelastic piezoelectric
plate with variable thickness, which may vanish on
a part of its boundary, i.e. body with initial

configuration QcR®, where QcR® is a
bounded domain with Lipschitz boundary 0Q of
the following form

Q={x=(X,X,,X5) € R*;h™ (X, X,) < X,

(X, %,) € o},
where @ — R? is a bounded domain with Lipschitz
boundary dw, h* € C°(@) N"C2 (@) are conti-

loc

<h™ (%, %,),

nuous on @ and Lipschitz continuous in the
interior of the domain @, h™(X;,X,) >h™(x,X,),
for (x,,X,) e@ Uy ,y < dw is a Lipschitz curve,
h*(x,,%,) =h™(x,X,), for (x;,X,) € 0w \y . We

denote by I'" and I'" the upper and the lower face
surfaces of the plate, which are defined by the

equations X; =h"(x;,X,) and X;=h"(X,X,),
(X,,X,) € @, respectively, and the lateral bounda-

ry, where the thickness of Qis positive, we denote
by
F=00\(" UT) ={xeR>h (X, X,) < X
<h™ (%, Xp), (X, %) € 7}
We assume that the plate is clamped along a part
[, ={xeT;(x,X,) €7,} of the lateral boundary

[, 7,7 is a Lipschitz curve, and on the

remaining part I =F\E surface force with

density g=(g,):T, > R® is given; electric
Iy ={xe I;
(X,,X,) € 72} of the lateral boundary T', 77 < 7

is a Lipschitz curve, and on the remaining part

potential ¢  vanishes along

[ =I'\I of the boundary the normal component
of the electric displacement with density
g”:TY” > R is given; magnetic potential
vanishes along Ty ={x € I (X, %,) € 7'} of the
lateral boundary T', 7 <7 is a Lipschitz curve,
and on the remaining part I}/ :F\ﬁ of the

boundary the normal component of the magnetic
induction with density g* :I'/ — R is given;
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={xe I
(X,,X,) € 77} of the lateral boundary T, 7 < 7
is a Lipschitz curve, and on the remaining part

temperature @ vanishes along Fg’

=r\I} of the boundary the normal
component of heat flux with density g’: T — R
is given.

The static three-dimensional model of the

thermoelastic piezoelectric plate €2 with regard to
magnetic field in differential form is given by the
following boundary value problem [17, 18] for
system of partial differential equations:

S in Q. i=123, (@)
3. 0D, .
—L=f° in Q, 2)
= oX
5, 0B, _
i in Q, 3)
71 OX;
3
_ iﬂij%=f9 in Q, (4)
210X OX;
3
u=0 onTl,, Y oyn;=g; onI,i=123 (5
=i

3
¢=0 onIy, > Dn=g’ onIY,

i=1

(6)

3
w=0 onTY, ZBini:g"’ onT/, (7)
i=1

Zm g’

i,j=1

0=0 onIY, on I,

(8)

where n=(n.)>, is the unit outward normal vector
to T', u=(u,):Q—>R® is the displacement

vector-function, ¢ 1 Q — R and ¢ : QQ - R stand
for the electric and magnetic potentials such that

electric and magnetic fields E and H are gradients
of @ and 1w, respectively, = —grade,
H=—grady, 8:Q — R is the temperature dis-
tribution, f=(f;)?,:Q—R® is the density of
applied body force, f*:Q — R is the density of
electric charges, and f? :Q — R is the density of

heat sources, (0') i is the mechanical stress

tensor, D:(Dj)j:1 is the electric displacement

vector, and B = (Bj)?:l is the magnetic induction
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vector, which are
constitutive equationS'

Zcupq pq (u)+ zé‘pu a_(D

p.q=1 p=1
3

2005
D - Zglpq pq(u) Zdu 6

given by the following

a"” — 4,6, i,j=123,

p.q=1 =t
>a,
- ) @ +y| i=123,
j=L Ja
3
B - Zblpq pq (u) zau 8
p.q=1 =t

3

—Zgu x +m6, =123,

where e; (V) = 1/2(av/ax +ov,10%;), i, =1,2,3,

v =(v,)%,, is the strain tensor, (C g 1S the

IJPq)
elasticity tensor, (gpij)i,j,p=l are piezoelectric and

(b,;); ;. p_1are piezomagnetic coefficients, (4;);

is the stress-temperature tensor,(dij)ﬁJ:1 and

(gij)ﬁjzl are the permittivity and permeability ten-
sors, (aij)f’j:l are the coupling coefficients connec-

(,ui)i3=1 and
(m,), are coefficients characterizing the relation
between thermal, electric and magnetic fields,
(15 )i i1 1 the thermal conductivity tensor.

We assume that the elasticity tensor,
piezoelectric and piezomagnetic coefficients, and
the stress-temperature tensor satisfy the following
symmetry conditions

Cijpg = Cijgp =C

jing 1 Pil = pii * ©)
by =byi, 4 =4 1,1,p.q=123.

By multiplying the equations (1) by arbitrary
continuously differentiable functions v, Q>R
(1=1,2,3), which vanish on I, the equation (2)
by a continuously differentiable  function
g_o'ﬁ — R, such that 5 =0 on Iy, the equation
(3) by a continuously differentiable function
173 Q—)R which vanishes on TY, and the
equation (4) by a contlnuously differentiable

function :Q — R, such that #=0 on Iy, by

ting electric and magnetic fields,

Ei =&
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integrating on €, using Green’s formula, and
taking into account constitutive equations for

(o )IJ _,» D, B and the symmetry conditions (9)
we obtain the following integral equations:
c(u,v)+&(p,v) +b(y,v)—A(6,v) = L"(v),(10)

—&(p,u) +d(p,0) +aly,¢)

i _ (11)
- B —,u(@,iD) =L (p),
~bly,u)+alpy) +Sww) Y,
_—m@w) =L (),
1(6,9) = L° (8), (13)

where

c(u,v) = j Z Cig € 5 (U)E; (V)X

(V) = i | %:15 e, (V)dx,
b(y, V) = i | ;lb e (V)dx,
A(6,v) = j _leijaeij (v)dx,
d(p.) = jZd j‘” S¢’ o,
)= 3o, 5 570
u(0,9) = j ;y 0—‘”dx
Clyy) = i.;g” ZV/ g‘// X,
m(@,y) = izl:m aa—V’dx
7(6,6) = jz n 2‘9 29 ,

L“(v):jif dx+jzgtr (v,)dr,

i=1 =1
Ql Fl|

L*(p) = [ *pix— [ 9"tr, (o)
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L () =~ [ g"tr,, ()dr,
i

L (0) = j f 2 Gdx — j g‘gtrrlg (6)dr.
Q 0

Note that the integral equations (10)-(13) are
equivalent to the boundary value problem (1)-(8) in
the spaces of twice contlnuously dlfferentlable func-

tions. Because functions v, ¢ and 1// are indepen-

dent of each other on the basis of the integral equa-
tions we obtain the following variational formu-
lation of the boundary value problem (1)-(8): Find

ueV(Q) ={veH'(Q); tr(v)=0 on T,},
peV?(Q) ={pecH'(Q); tr(p)=0 on IV},
w eV (Q) ={y e H'(Q); tr.(w)=0 on TV},
0eV’(Q)={0eH*(Q); tr.()=0 on I’}
which satify the equations

AU, @), (V.0.0) = L(V,0,)

z . (14)
+A(0,V) + u(6,0) + m(6,y),

n(0,0)= (), (15)

for all veV(Q), peV?(Q), weV'(Q),

0eV?(Q), where
AU, 0,¥), (v, 0,p)) = c(u,v) +d (9, )
+a(y, @) +ale.p) + S (W.w) +&(p,V)
—&(p,u) +b(y, v) —b(y,u),

L(v,p.p) = L'(V) + L”(p) + L" (w).

For the problem (14), (15), which is equivalent to
the boundary value problem (1)-(8) in the spaces of
classical smooth enough function, we have the
following existence, uniqueness and continuous
dependence theorem.

Theorem 1. Suppose that Q — R? is a bounded
domain with Lipschitz boundary, the curves y,, 7y,

;70‘/’,7709 have positive lengths and the parameters

characterizing thermo-mechanical and electro-

magnetic properties of the body Q are such that
Cipg Epijr Dpips Gy Gy gy Agy f4, My,

7 €L°(Q), 1,],p,9=1,23, satisfy symmetry

conditions (9) and the following positive defini-
teness conditions

Z CipgSiiSpq = & Z(f.,) (16)

i,j,p,q=1 i,j=1
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Zﬂuf & za Z(f) 17)

Zle5 5 +Zau§ 5 +Za”§ §

i,j=1 . i,j=1 3 i,j=1 (18)
+2658 2a) (6)° +(6)?)

forall & eR, & =&, &.,& R, and for al-
most all xeQ, where «.,a,,a are positive con-
stants. If f e L**(Q), geL**(T), f°el®(Q),
gqo c L4/3(rl(p), gl// c L4/3(F1W), .I:H c LGIS(Q),
9’ e L"”*(17), then the problem (14), (15)
possesses a unique solution  (U,p,y,0) €
V(Q)xV?(Q)xV"(Q)xV?(Q) and the mapping
(f,0,5,9%,9”,1%,9%) = (U, p,w,0) is linear
and continuous from the space L*°(Q)x L*(T})
x |65 Q) x 43 () x |43 () x |6/5 (Q) x |43 (Fla)

to the space V(Q) xV ?(Q) xV" (Q)xV?(Q) .

3 Two-Dimensional Models

In this section we construct and investigate static
hierarchical models of the thermoelastic piezoelect-
ric plate with variable thickness, which was con-
sidered in Section 2. In order to construct the hierar-
chy of two-dimensional models let us consider the
subspaces V() of V(Q), N=(N;,N,,N;),
consisting of vector-functions whose components
are polynomials with respect to the variable X,,

V=), Vi = i%(ri "‘%]\ri/Ni P, (2),

r=0
v e (@), 0K <N, i=123,
where 7 = %=1 , h-" _hi, h=" +h7’ R
2 2

is the Legendre polynomial of order r € N U{0}.
We also consider the subspaces V\{ (€2), V3 (QY),

and V{ (Q) of V(Q), V¥ (Q), and V’(Q),

respectively, which consist of the following
functions

N
_ 21 1) b o
PN, = z_(r(p +EJ¢N¢ Pr¢ (2), Py, € L* ().
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—Z [
where T, :0,..., o Ty =0,...
Since the functions h*™ and h™ are Lipschitz
continuous in @ due to Rademacher’s theorem
[19], h" and h~ are differentiable almost

everywhere in @ and 0,h* e L”(w”) for all

subdomains @, Ec o, a=1,2. Therefore, the
positiveness of h in @ implies that for any vector-
function v, = (V)i €V (Q) the corresponding

i - P .
functions vni € H'(@"), forall o*, o c o), ie.

vni € HL (@), 0<r <N, i=123. Similarly,
for all functions @, eV{ (Q), v, eVy (Q),

T Ty o

0y, €Vy, (Q), the functions @, , 7y , 6y, of

Ny
two space variables in the expressions of ¢, ,¥ ,
P v

T Ty

6y, belong to H'(w"), o co,ie Py, s P,

To

O, eH. (w), r,=0...,N,, r,=0.,N,
ry=0,...,N,. Moreover, the norms |[.[| ., and
[l lls, i the spaces H'(Q) and H'(Q) define

weighted norms ||.[|. and ||.]|. Al Of

Al
- h
vector-functions vy = (Vni) e [HL_ (@)]"2°, N,

=N+ N, +Ny+3, and 3, = (7, ) e[Hh (@)™,

i

_ @) eHL @18, = @,) eHA @™,

such that (| Va L=l vyl and 11y, ll,e=

7

1B, ey N, =7, iy 118y, le=
| §N0 ||H1(Q). Using the properties of the Legendre

polynomials, we can obtain explicit expressions of
the norms [|.[l. and ||.{|«, IIll,«, II-[l~- In parti-

cular, || .|} is given by the following expression:

I =Y Z'(si +§J(1—(—1)“+Si)

I3
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2

s; r; 2 N; 1
e N T DN DY (si+5)
Lz(w) a=1|[s;=r,+1

- __\}Ni__ \i/Ni
(8ah+ ( 1)|’+S aah )h 3/2 h lIZaa

2
L2 (o)

fi T Ty o

For components Vi and @ , ¥ , 6y, of

+(r +Dh25_hvw

vv and @ , @y 6y, . which possess the proper-
[4 14
ties [|vn [l.<oo and [|@y [l<oo, |y, [l,~<o,

||5NB |~<oo we can define the traces on .
Indeed, the corresponding vector-function of three
space variables v, =(v,,)?, and functions Pu, »
Wy, 6y, belong to the space V, (Q) = H'(Q)
and V7 (Q),V{ (Q), Vg (@) cH'(Q), respec-
tively. Consequently, applying the trace operator
tr: H'(Q) > HY*(I'), we define the traces of

fi Ty Ty o

Vni ’an ' VNW ' eNH on 7’
h h*
tr; (Vi) = [t (vyy )P, (2)dxs, 1, =0,., N, i =123,

h-

r, h*
tr; @y,) = [t:(@y )P, (2)dxs, T, =0,.,N,,
J

,N

78l

r, h*
tr; 7y, ) = [tr: 77y, )P, (2)dxs, 1, =0,..
J

I h* .
tr; (Oy,) = [tr= (0, )P, (2)dx;, 1, =0,...N,.
J

Since the vector-functions v, € V(Q2) and the
functions @, eV (Q), w7, €V (Q), by, €

I
VNQH (€2) are uniquely defined by the functions v, ,

[ r, ry

0, W, 0, of two space variables, conside-
Pn,» ¥n, o O, p ,

ring the original three-dimensional problem (14),
(15) on these subspaces, we obtain the following
hierarchy of two-dimensional boundary value

problems: Find Uy e\7N(a)), CENWEVKC,(CU)’

Wy, e\7,§’w (), §N€ eV, (w), which satisfy the
equations

E-ISSN: 2224-3429

81

Gia Avalishvili, Mariam Avalishvili

A, (U 07 ). (W, By 7))

= Luwy, U@y o7, )+ Ay (B, Vn) - (19)

+ ttyyn, By, )+ My, O, ),
M, 0y,.0,,) = L% By,

for allVn 6\7,\‘(60),4?,\,W 6\7'3; (a)),lﬁNw E\m'w (@),

(20)

Oy, €Vy, (@), where

V(@) =07, = (i) < [HE (@)1

\7N||* < o0,
tr, (Vi) =0 on 7,1 =0,...,N,,i =123},
Vi (@) ={@y, = @y,) € [Hi (@)]™7;

Vi (@) ={7y, = @y,) ML (@)1

- <o, tr; (py ) =0 on 74, =0,.,N_},

oy,

zﬁNw <o, (VZW):O onyy,r, =0...,N,}
v

V? (@) =y, = @y,) e[HE ()]

Oy,

< tr;(6y,)=0 onyy,r,=0,.,N,},

the bilinear forms ANNWNW () A i) s Hyn, (,),
My,n, (--) and 7y (.,.) are the restrictions of the
bilinear forms A(.,.), A(,.), u(..), m(.,.) and
n(.,.), respectively, on the subspaces V,(Q),
VY (Q), VY (Q), Vy (€), which are considered
as V:[he biline;r forms with respect to the vector-

functions v, 5N¢, tﬁNW, 6y, of two variables, i.e.
A, (O @y 5, ) 0y 7))
= Awn, (T By 7 ) (Vo By 72D,
D@, V) = 2By, V),
sy, Oy, Bv,) = 1@y, By,).
My, O, 7y, ) =M@y, 7, ).
M, On,04) =10, .81,
for all vector-functions \:/:N,\_}N eV, (0) ,(';Nw,g?Nw

eViy (@) 9y, .7y, €V (@),0y,.0,, €V (@),
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corresponding to V,,vy € Vy (Q), ¢, @y €V (Q),
Wn, Wy, €V (Q), 0~N3,§N8 eV, (Q), respec-
tively. The linear forms Ly, \ () and Lﬁ,e (.) are

defined by the linear forms L(.) and L?(.), and
they are given by the following expressions:

NN N, (VN §0N |WN )= ZZ( j{ hVN|

=1 r,=0

[f +07 4, +0; A (-D)" jda)+'|'—tr~(vN.)g dyl}
& 1\l %[
+%(r¢+EjI:£H¢NW[f +g¢’ ﬂq_
+gw_/17(_1)rw}ja)+ Etr ((pN )g d71]
< el ™ (. _ .
+Z(rv, +§j .[EV/NW (g"’ A, +9" 2. (=) W)da)
rW:O ®
1
+ _tr‘('//N )g dyy :lr

0 i 1 1_v rﬁe o+
LNH(QNg)—r;) )ty :[FHNH f049% A

+9%7 A (- 1)r9)da)+_[—tr~(6?r0 )gr{} dy/l}

where =7\y0, =7\70, 27\70W,

STNTE A =l @ ) v = IvP(z)dxg,

for all functions v e L(QQ),r € N u{O}, 9:.9%,

g”*, g% are restrictions of g,,9%, g¥, g on

the upper T'" and the lower I"" faces of the plate,
respectively.

Note that the constructed hierarchy of problems
(19), (20) are two-dimensional hierarchical models
of inhomogeneous anisotropic thermoelastic piezo-
electric plate with regard to magnetic field. For the
obtained static models (19), (20) the following
theorem is valid.

Theorem 2. Suppose that Q@ = R® is a bounded
domain with Lipschitz boundary, the curves 7,77,

7y ;70‘9 have positive lengths and the parameters
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characterizing thermo-mechanical and electro-

magnetic properties of the body Q are such that
Cipar €pi» By yo Cyo &y Ay g4, My,

n; €L°(9), 1, j,p,q=1,2,3, they satisfy symme-
try conditions (9) and the positive definiteness con-

ditions (16)-18). If K™/ , € L*(w), h™'* g,
€ L4/3(71) (. =0,..,N,),1,09;,4.0; € L4/3(a))

(| — 1,2’3) ' h—1/6 fwg c L6/5(a)) ' h—1/4 gw(ﬂ c L4/3(7/1¢J)

(r,=0,.,N,), 2,9”",4.9" € L*3(w) ,h™* gw'”
el () (r, =0...N,),2,9"", 29" e L*(w),

h—llG ff] c L6/5( ) h—1/4 gé’ c L4/3(719) (rg :0,...,N€),
2,97,2.9% e L"*(w), then for each N, eN
{0} (i=123), N, e NU{0}, N, e N {0},

N, e NuU{0}, the two-dimensional problem (19),

(20) possesses a unique solution.

So, we have reduced the three-dimensional
boundary value problem (14), (15) to the hierarchy
of two-dimensional ones (19), (20) and have
investigated the existence and uniqueness of the
solution of the obtained problems. In order to justify
the constructed two-dimensional models we
estimate the difference between the exact solution
(u,@,,0) of the three-dimensional problem and

the vector-function (Uy,@y Wy, .6y,) € Vy ()
XVI\(I/; () ><VN”’W (Q) xVhf; (QQ), corresponding to the
solution Uy, @y_.¥7y, -6, ) €Vy (@) xVy (@) x
\7,3; (a))x\7N6'g (w) of the two-dimensional problem

(19), (20). Convergence result and an estimate of the
rate of convergence are given in the next theorem,
but before we formulate it, let us introduce the
following anisotropic weighted Sobolev space

H ' (Q) ={v;h""65"0]v e L*(Q),h*'0,h*o5v

el’(Q),1<k<s,r=01 i=123,a=12},
which is a Hilbert space equipped with the norm

Wl [Z[Z

r=0 i=

k-1Ak-1
(LA

9 1/2
+ I 0,h 0 | +Z||h“a h-ov . “’D .
a=1

The following theorem is valid.
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Theorem 3. Suppose that Q  R? is a bounded
domain with Lipschitz boundary, the curves 7,77,

74 7, have positive lengths, the parameters ¢,
i+ Do Ao o @y, Ay g, My, 17 € L7(QY),
i, J,p,0=1,2,3, satisfy symmetry conditions (9)
and the positive definiteness conditions (16)-(18). If
fel®(Q),geL™T), f el®(Q), g” e L),
9" e L"*(1y), e L(Q), g% € L*(I}), then

the two-dimensional problem (19), (20) possesses a
unique solution and sequence of vector-functions

(Un @n, Wx, On,) € Vo (Q)XV (Q)xVY! (Q)
><VN99 (QQ), which correspond to the solutions
(@, By, Fn, B, ) €V @)XV (@) V! (@)xVy; (@)
of (19), (20), tends to the solution (u,@,y,8) in
the space V(Q)xV?(Q)xV"(Q)xV’(Q), as
N i =MIin{N;,N_,N_,N,}— oo. Moreover, if

1<i<3

&

H 1Ls, (Q) ,
S, 22,

ue(H™(Q), pe H™(Q),y e
OeH"™ " (Q),s,,
then

U=ty Hlo=—0n, Il Hlv —wy, g

S,15,15, €N,s,,8,,S,,

+16-0,, | %5(9,r0,rg),rg,rg,ﬁ),

where §(Q,T,,I¢,IY,T¢,N)—>0, asN,,, — o,
N=(N,N,,N,,N,).

Hl(ﬂ)S

4 Conclusion

We studied boundary value problem with mixed
boundary conditions for displacement vector-field,
electric and magnetic potentials, and temperature
corresponding to the linear dynamical three-dimen-
sional model for inhomogeneous anisotropic ther-
moelastic piezoelectric plate with variable thickness
with regard to magnetic field. We obtained
variational formulation of the three-dimensional
problem in the corresponding Sobolev spaces,
which is equivalent to the original differential
formulation in the spaces of sufficiently smooth
functions. We formulated theorem on the existence
and uniqueness of the solution of the three-
dimensional boundary value problem, and the con-
tinuous dependence of the solution on the given data
in suitable function spaces. We constructed a
hierarchy of two-dimensional static models and
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investigated the existence and uniqueness of
solutions of the corresponding boundary value
problems in suitable weighted Sobolev spaces.
Moreover, we proved that the constructed
hierarchical two-dimensional models for thermo-
elastic piezoelectric plate approximate the original
three-dimensional model and obtained estimate of
the approximation error. Note that the lower order
models of the constructed hierarchy can be used as
engineering models of thermoelastic piezoelectric
plates.
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